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We consider both the spatial domain and spectral domain forms of the Green’s function, appro-
priate in the electromagnetic diffraction of a plane wave incident in the zy plane on a singly periodic
structure, or grating, oriented along the z axis. For the spectral domain form, we exhibit, for an
obliquely incident plane wave, cubically convergent forms for the Green’s function and both its z and
y derivatives. We compare the spatial and spectral forms of the Green’s function, and so establish
expressions from which grating lattice sums can be efficiently evaluated for normal incidence. We
use these lattice sums in an alternative expression for the Green’s function, which we show to be
computationally faster than the accelerated spectral domain expressions for the Green’s function if
knowledge of this function at several points is required, for small values of y.

PACS number(s): 03.50.De, 42.25.Fx

I. INTRODUCTION

The calculation of the free-space Green’s function in
problems of electromagnetic diffraction by singly peri-
odic structures (gratings) is the key to the efficient nu-
merical solution of many current questions of technolog-
ical importance. Important work on this question has
been carried out by Maystre [1,2] and Tayeb [3]. Recent
studies have discussed means of achieving accurate and
efficient evaluations of the two important forms used for
the Green’s function—the spatial and spectral represen-
tations [4-8].

The spatial form represents the Green’s function as a
sum of fields radiated by a sum of appropriately phased
line sources, and so writes the solution of the Helmholtz
equation in terms of Hankel functions multiplied by
trigonometric angular dependencies. The spectral form
represents the Green’s function as a sum of plane waves,
each obeying the appropriate quasiperiodicity condition
[9]. Each of these forms is slowly convergent, and so
numerical and analytic strategies have to be devised to
enhance the convergence of the series if prohibitive com-
putation times are to be avoided.

In the past, the strategies adopted to accelerate con-
vergence [4-8] have relied on several ideas. Kummer’s
transformation has been used to subtract off an analyti-
cally summable series, leaving a more rapidly convergent
series to be summed numerically. Poisson’s summation
formula has been used to transform a slowly convergent
series in the spatial domain into a more rapidly conver-
gent series in the spectral domain, and vice versa. Also,
algorithms such as those of Shanks [10] and Wynn [11]
have been used to accelerate the convergence of oscillat-
ing and monotonic series.

Here, we start by considering the spectral Green’s func-
tion for the case of a plane wave incident, in the zy plane,
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at an arbitrary angle on a grating along the z axis, and
accelerate its convergence by using Kummer’s transfor-
mation. We show how, in principle, the series may be
made convergent to an arbitrary order, and exhibit forms
which are quadratically, cubically and fourth-order con-
vergent. The last forms are derived because they yield
cubically convergent forms for the spatial derivatives of
the Green’s function.

Next, we compare the spectral and spatial forms of
the Green’s function. We expand the resultant identity
using Graf’s addition theorem, and we compute the lat-
tice sums for the case of normally incident radiation. The
case of arbitrary incidence and quasiperiodicity [9] is con-
siderably more complex, and so it will be discussed in
later work. These lattice sums have only been evaluated
hitherto for the sum of zeroth order; here, we exhibit
a recurrence formula which enables their calculation to
arbitrarily high order. We use the lattice sums to con-
struct an alternative expression for the Green’s function,
which we show to converge sufficiently rapidly to jus-
tify its use over other techniques in situations where the
Green’s function G(z,y) has to be evaluated for small
values of y. (The lattice sums are independent of the
point at which the field is evaluated, and therefore the
time penalty in calculating them is amortized over the
number of Green’s function evaluations.)

We present numerical results confirming our results in
both graphical and tabular form, in order to aid those
wishing to implement our methods. For the same rea-
son, we give in an Appendix formulas which may be used
to rapidly evaluate the less common transcendental func-
tions used in our analysis.

The derivations presented here are in some cases com-
plicated, and involve a range of special functions. How-
ever, our results are readily computable (and we are pre-
pared to give interested readers copies of our MATHEMAT-
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ICA programs for them). For readers more interested in
results than derivations, our key equations are (10), (11),
(39), and (43), while Table II may provide motivation to
those bogged down in a quagmire of analysis.

II. THIRD-ORDER ACCELERATION
OF SERIES CONVERGENCE

A. Plane wave expansion of the Green’s function

In grating problems, for a fixed incidence angle # and
period d, we are led to consider a Green’s function G(z, y)
which obeys the inhomogeneous Helmholtz equation:

(V2 +k*)G(z,y) = 8(y) ) b(z—nd)e™n?, (1)

n=-—oo

where g 4ef ksin® and k is the wave number of the
incident plane wave.

This function G is given by one or the other of the
following forms usually called the “spatial form” and the
“spectral form [5].” We will denote these two forms by
G4 and G,., respectively. If Hél) stands for the zeroth-
order Hankel function of the first kind, the spatial form
is

[ ,
Ga(z,y) = E Z H(()l)[k (z — nd)? + y?] elaond (2)

The spectral form, which is linked to the spatial form
using the Fourier transform, is

G,(z,y) = — 1(0n2+xn|y|)’ 3
@0 =g 2 e 3)

where
2mn
an-——a0+nK=a0+—d~ s
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X"z{i,/ag—kz , a2 > k2. (4)

The series (3) may be written in the form
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Here, we have denoted by S(z,y) the series
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and Z* = Z\ {0}. We apply the Kummer method for
series acceleration [12]; i.e., we subtract and add to (6)
its asymptotic form, summing the asymptotic form ana-
lytically. To evaluate the asymptotic behavior of S(z,y),
for large n, we consider the expansions (readily verified

by Mathematica):

Xn = tlan| /1= (k/an)?

1Xn

. kz a0k2
=3 {|n|K + agsgn(n) — 3K T K
k?(ad + k%/4) 1
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We keep only terms of order 1/n%, such that the general
term in (6) has the asymptotic form

Xl ke g~ {InlK-+ao sen(n)—k?/(2In| )}yl
1Xn
1 + Qo einK:c (7)
[n|K  n|n|K? ’

and, for large n, we expand

2
Jl/emiE) _ o KL g (L) .

2|n|K n?

Neglecting the terms of order higher than 1/n?, we
obtain

eixnlyi e—{l‘anﬁ»O(o sgn(n)}y| Qg kzlyl
iXn |n|K [_ + nK 2n|K
= un(y) - (8)
The sum of the asymptotic series
Sa(@y) = 3 unly) K (9)

nez*

can be put in closed form using appropriate, but exotic,
special functions:
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Here, Li, is the dilogarithm function (see Appendix) and
we have used the relation [12]

Zi——ln 1-2), 2] <1,
= n

which holds true even if |z| = 1, provided that z is not
precisely unity [13].
Finally, the Green’s function (5) may be written in the

form

eixolyl

X0

oy
erao®

2d

Gr(z,y) = + Salz,y) +

E : einKa:

nez*

etxnlyl e~ {In|K+ao sgn(n)}y|
x iXn [n|K
(o7} kzM
(1- 2+ )| 1 (1)

containing a series which converges as
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B. First-order derivatives of the Green’s function

In order to obtain the same rate of convergence for
the first-order derivatives of Green’s function (5), with
respect to z and y, we need a Green’s function repre-
sented by series converging as ~ e~ |"¥/¥0(1/n*). This
means repeating the above method taking into account
terms of order 1/n3. To allow a comparison of numerical
results, we will give here the final expressions of the first-
order derivatives of Green’s function, in terms of series
converging as 1/n3. In this case, (8) takes the form

eixnlyl  g—{In|K+aosgn(n)}yl
iXn |n|K
k? k?
w|o14 20 _ Flyl | o |yl
nK 2n|K  n|n|K?
8o +4k? +

8n2K?

k4y2}

= wa(y) - (12)
ek o (LY.
n3 Consequently, we obtain
S
Sa(z,y) = e~%ol¥l ln(l — e Klyl+iKey L — 1 oo — w Lip (e~ Klvl+iK=)
al\dy Kz 0 2
8a2 + 4k? + k*y?\ . , _ ;
KS (a0k2| |- 0 - Yy )Lla(e Kly|+ Kz)
o 1 - —iKe 1 kz B - —1
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K3 (aok2|y| + = ’ )Lla(e Kll+ike) 8, (13)
where Lij is the trilogarithm function (see Appendix), and the Green’s function is
etz [ gixolyl ) etxnlyl
G.(z, - S.(z, inKe | n .
@) M{m Fuen)+ 3 e [ S0 ww” (14)
The first-order derivatives of the Green’s function are given by the formulas
oG, . et | 98, inke | €Xn Y1
9z g G«,-(Il?,y) + 2d { 9z [ iXn _wﬂ(y)] ) (15)
nezZ*
oG, ooz S, K [ Ow,
=sgn(y inKz | gixnlyl _ ] 16
oy W { ol T 22 3ly] (16)

where the series converge as ~ e~I"¥/K0(1/n3). Here,
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III. NORMAL INCIDENCE:
PERIODIC GREEN’S FUNCTION

A. Lattice sums

From now on, we shall be concerned only with the
study of gratings in normal incidence. In this case
(a0 = 0 and ,, = nK), we will obtain some formulas
of practical interest by equating the spatial form (2) and
the spectral form (3) of the Green’s function. Using these
formulas we will be able to compute accurately the so-
called lattice sums which, as proved below, allow us to
reduce the computation time when, in a certain problem,
the Green’s function has to be evaluated at a large num-
ber of points (perhaps as many as several hundreds). We
confess that the involved mathematics are tedious and
cumbersome but, as we will show in Sec. IV, the result
is worth the effort. By assuming y = 0 but = # 0, and
equating (2) and (3) we obtain

kZ
)= (%

2(jnlK)? [aosgn(n)iyl - ’“Ty]

) k2|y| + aosgn(n) k48y2] }

(1 _ i u)nz
ZH (k|lz — nd|) = ZX (17)

nezZ €z

or, for z > 0,

+ Y HP (ke —nd) = 2 Z Xi"e"“nf.

nez* nGZ

H (kx)

(18)

In (18) we apply the addition theorem for Bessel func-
tions [12], for —d < = < d so that |nd| > |z|, Vn # 0:

HV (kx) + Y Z HY (k|n|d) e Jy(kz)e -

neZ* f=—oo

== Z - etn®  (19)

nEZ
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Here, 0, = nH(—z) and ¢, = mH(—n), where H is the
Heaviside step function:

_Joifx<oO
H(m)“{lifz>0.

For k and d fixed, let us call lattice sum of order £ the
complex number S;(k,d), defined as

S HP (nfk|d) e, (20)
nez*

Sy(k,d) =

With this notation, (19) becomes (for x > 0 we have
6. = 0) [14]

(1) gian®
H} km)+l; Se(k,d)Jo(kz) = d; anz.

(21)

From (20) we deduce that, for normal incidence, the
lattice sums of odd order vanish. Taking into account
that ¢, = 0 for n > 0 and ¢,, = 7 for n < 0, we obtain

Selkd) = 3 {J(nkd) + i¥s(nkd)]

:—:[J,(nkd) + 1Y (nkd)] exp (ilm)}
= 3 {Jelnkd)[1 + (~1)]

+iYy(nkd)[1 + (-1)]}.

1 iane __ i ian, 1 i0n T
Z;eaz_zxne z+7§ﬁzlxn| et

neQ

t n 1 o T ]
— Z ~ anT Z lenl et

neQ neQ”

4567

If we define S/ (k,d) and S} (k,d) as the real and imagi-
nary part of S¢(k, d), respectively, then

Sy (k,d) =2 Jar(nkd), Sipsq(k,d) =0,

n=1

Sy (k,d) =2 Yar(nkd), S3p.:(k,d)=0,

n=1

and (21) takes the form

H (kz) + So(k, d)Jo(kz) + 2 i Sae(k, d) Jae (k)

=1

S

nez

Assuming that k/K is not an integer, we say that n €
Q or n € Q depending whether k? — n2K? is positive or
negative. We decompose €2 in three subsets: Q1 (n > 0),
Q™ (n < 0), and {0}. In the same way, Q is decomposed
in QF (n > 0) and Q- (n < 0). With these notations,
the right hand side of (22) may be written in the form

1 .
+ § . e'lanz
— ZanI
Q

ne

neat Xn

1 exp (ta + —1
_"+Z p (tanz) + exp ( an:c)+

Z exp (ianz) + exp (—ia,z)

o il x|

1 +2 Z cos anx) 42 Z cos (an) .

neQt
Substituting in (22) and equating the real and imagi-

nary parts we obtain the equations

Jo(kz) + S§ (k,d)Jo(kz) + 2 i 53, (k, d)Je (k)
£=1

=3{%+2 3 c——-—os(a"m)}, (23)

neqQt n

Yo(kz) + SY (k,d)Jo(kz) + 2 i SY,(k,d)Jze (k)
£=1

cos ( :c)
- X e e

neqtt

ZIXnI

In the first equation, a,, < k, Vn € Q*. Consequently,
the general solution is obtained by substituting, in the
right hand side, the Jacobi expansion [12]:

cos (anx) = cos {kz sin [arcsin (a, /k)]}
= Jo(kz) +2 ) Jar(kx)
=1
x cos [2¢ arcsin (a, /k)].
By equating the coefficients of the corresponding Bessel

functions we obtain the general solution of (23) in the
form [15,16]:
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Sp(k,d) =2 Ja(mkd)

m=1

2 4 cos [2€ arcsin (@, /k)]
s £ 42
£,0+kd+dz ol :

neQt

(25)

Note that the restriction n € Q% implies a finite sum,
not a series.

On the other hand substituting the Neumann series
(12]

_% i (‘Zl)e ) (26)
=1
in Eq. (24), we obtain
{s{(k,d) + % [111 (’—“f) + 7] } To(kz)
+2§: [s{,(k,d) _ ;(—1)5] Tae(ka)
=1

COS
B dz Ixn ’27)

neQ™®

where v = 0.577216 is the Euler-Mascheroni constant.
In the zeroth-order approximation, with respect to z,
the right hand side of (27) becomes

4 cos (anx)
d n
eat |
4 1 1 1
< Z e al - X

+% In (Kz). (28)

as n— oo, (29)

and we have applied Kummer’s transformation for series
acceleration, so that
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cos (anpx)
2 IXn|

neQ”

I

L el [ e ¢ 2

'nEﬁ+ nEﬁ*
1 1 cos
= 3 cos(anz) [ _]_ Y cos(enz)

4 |an Qn Ap
neq) neQt

>, cos (anz)

n

e

n=1

For small z, in the first two terms, we use the ap-
proximations cos(a,z) = 1. At the same time, if
0 < Kz < 2r (i.e,, 0 < z < d), the last series has a
closed-form sum [12]

3
Il
—

Finally, for small z, Jo(kz) = 1, Jar(kz) = 0 (£ > 1)
and, from (27,28), we obtain the expression [16,17]

-2 [m (2];() M]

-3 Z[T;ﬂ_&};]‘zai . (31)

ne@tt neQ+ "

S¥ (k,d) =

This represents S7 in terms of a quadratically convergent
series.

To obtain the lattice sums of higher orders we substi-
tute the expression of SY in (27), then we consider the
series expansions of the Bessel functions up to the order
2¢. The coefficient of 3¢, in the left hand side of (27), is
given by the formula

‘ 2 (=1) i (k/2)
2;[55_?“1_}(_1)[ (= )+ 5)!

4 1 1 1
d HZGW [m - ZJ - nzem an
k/2)% 2 k/2)%
('1)8((21))2 2wt (é!))z

In (Kz). (32)

In the right hand side of (27) we consider, instead of
the asymptotic form of 1/|xx|, its Taylor expansion up
to the order £:

£ 2s
1 1 .k 1
el = an Y (a:) P20 “0( )

where P, represents the Legendre polynomials. Kum-

mer’s method leads us to the expressions
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(—)2' Pza(o)}

+ Z cos ( ana:) Z

=—§{nezﬁj+cos<anz) [lx———Z( b (&) puco }

—n§+ °°S(“"“’ 2_;)( 1) P2,,(0)} dZ“s(""‘”)z _1)* ( )z’pz,(())
{EH [ﬁ o (i)

R con o) Z( D (o )’ppm)}—;g—l)’ (&) POtz <o) 53)

2 is given by

Here, Cly,; is the generalized Clausen function (see Appendix)
Now, we substitute (A6) in (33) and expand the cosine functions in power series. The coefficient of z

> 2= E( 1)’( )th.(O)}

neQt Qn 8=

4

( 1)‘ { Z a’gl[ I:_l_ _ al_nz(_l)ﬁ (:_n) Pp(0)| —
eat

(20'd |Xn| =

2¢
1) 2 K2 Z(—)( ) Pg,(O)———(Zu__;;). (34)

LR L ) (Kz) - 2 puy(0) (Z—
@ @\ & w (20)!

Substituting
Py, (0) = (- 1)8(12‘3—% = (- )‘22(,2(2)!!)2

in the last three terms of (34), we obtain

- 1)‘4{29; o [___Z( e (_) P,,(0)

(20)! d Xnl

-3 %ffg(—l)’ (5’“;)2’132,(0)}

neqQt

(s)2 (2 — 25)

20 2¢ 2¢
el o Lot (£5) 2,

By equating (32) and (35), the terms logarithmically diverging for small x cancel and we obtain the relation

} (_ )t (k/z)u

1

(k/2)* 2 BRI
k)2 _2{n§+[1 an] 5

¢
y _2 (=1 1) I
Z [S . ] (-1) E-NE+35) d xn nea+ & (&2

=1
=G0t { > o [L - L3y (i)% Pz.(o>] - sy ey (i)za Pz,(m}
(20)! d =i [xn| on = an, ol et an
K* 3 2 (25)! Bay—2s

(k/2) (S51) | 1 Bat-aa_
_,r( 1)* ()2 (;;) ; (23)12(21{) s')2(2£ 2s)°

This is a recurrence relation for the lattice sums. If we separate SJ,, (36) becomes

tKZl £— 1( ) 2s (23)! B2[._25 (3
2K ’

5)

(36)
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-1 ;
1Sy, = 2 y 200 gy @Ot ) 202! BN B
(=1)"Sze = — J;{[Sza T g J (=1) (e-j)!(e+j)!} e {g{; [|Xn| an:l nezm an}
2 2 2¢ o 1 ﬁi 4 e vki 28
-2(2) {Z [m an 257 (o) P
4 2s ' 2¢ 1 1 £—1 2K 2£—2s (23)! le~2
_ ail-l (_1)3 i st(O)} _ l (2[)2 ( _.) + = an s (37)
nez(; sz:;) (an) m (&) ;p 7 ;( k ) (s1)?2 2¢—2s

Taking into account the Taylor series of 1/|xx|, for n € §+, we have

20 2s 24 oo 2s
2 (2 1 1 Lk 2 (2 _ Lk
) S e () e 3 () p S () e
neq® Xn n o n neqt s=£+1 n
1 & (28 2K\ & 1
T r Z (2 \k Z n2s—20+1
s=f+1 n=m+1
1 S (28) [2K )\
=f41 V7

where 2mn < kd < 2(m + 1) and ((s,m) is the generalized Riemann zeta function [18].
Finally, the recurrence relation for the lattice sums ngl, £ > 1, may be written in the form

-1 ;
£qy 1(20)! oy y 2 (=1 ; (20)!
— = = _ oz GV S ot A
0 Si= e S - LT E | Y e
4 2£—-2s
2 1 (2¢)! k 1 (2s)! (2K 1
e T w (e [ln (51?) ”] * Eg CIEAN EZQ* n2a—2t41
-1 2028 2¢ S 2025
1 (2s)! (2K Bay—2, 1 (2¢)! 1 1 (2s)! (2K
- = - = Z)-= DAy (it 25— 20+ 1,m+1
P NEIE ( k ) 2W—2s 1 ()2 ;p ns;;l AN C(2s —26+1,m+1)
(39)
and S{ is given by (31).
This recurrence relation does not appear to have beeen derived previously. Examples of its application are
Sy (k,d) = 2) _ Ya(nkd)
n=1
1 1 /K\’[1 2 & 1 1
=~ (=) |- +2mm+1)| == S -
2 () [sromeney] -2 2 | =Ry n}
12K\ & (28)! [k \*
- (== = - 1 40
U( k) ;(5!)2 (21{) C(2s—1,m+1) (40)

and

o+ 5 [ ] () S () s

where m <k/K <m+1.
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B. Green’s function in terms of lattice sums

In the case of normal incidence (ag = 0), (2) takes the
form

1
== S H (klr — Ra))

nez

Gd(ma y)

H((,l)(k )+ Y HEV(klr — Ral) |}
necz*

(41)

where r = (z,y) and R, = (nd,0). Within the unit cell
(-d/2 < =z < d/2,-d/2 < y < d/2) we have r < R,,
Vn # 0 and we apply the addition theorem for Bessel
functions [12]. In this way (41) becomes

£=—o00

Ga(z,y) = [H(l) (kr) + Z Se(k,d)Je(kr) e-d"] ,

(42)

where the lattice sums S, are defined in (20) and 8 =
arctan (y/z). Only the lattice sums of even order are
different from zero such that (42) may be written as

Ga(z,y) = [Hg”(kr) + So(k, d)Jo(kr)

+ ) Sar(k,d)Jze(kr) e_Zito]
ez~

1 [Hgv(kr) + So(k, d)Jokr)

+2§:Su(k,d).]2[(kr) cos (2[0)] . (43)
£=1

In this way the Green’s function (2) is represented as
a Neumann series with coefficients given by the lattice
sums. Physical arguments indicate that the radius of
convergence of the series in (43) is 7 = d. [These physical
arguments are based on the location of sources of the pe-
riodic Green’s function, which are at £ = 0 —represented
by Hél)(kr) in (43)—and z = nd (n = +1,+2,...)—
represented by the series in (43). They are supported,
mathematically, by the asymptotic estimates for the S,
with £ large, discussed below.]

C. First-order derivatives of the Green’s function

The first order derivatives of Green’s function (43) are
given by the formulas:

BGd 1

3 4i{ [Hé"'(kr) + Solk,d) 4 (kr)

> k
+2) " Sar(k, d) T3 (kr) cos (2@0)} T”

£=1
> , o6
~4) " £S3(k, d) Jae (k) 5111(2(0)% , (44)
=1
8Gy 1 ,
B_yd = Zﬁ{ [Hg” (kr) + So(k,d)J}(kr)

> k
+23 " Sae(k, d) 3, (kr) cos (219)] Ty
£=1

—421521 (k,d)Jae(kr) sm(zzo)—} (45)
£=1

for y > 0. Here, 89/8z = —y/r? and 80/8y = z/r2.
Substituting the derivatives of the Bessel functions:

Joe(2) =

HM (2) =

2¢
—Ja2e41(2) + -Z—Jzz(z)’
-H{Y(2),
we obtain

oG 1
o = 4‘{ [Hi”wr) + So(k, d)Jy (k)

+2ZSu(k d)Jye41(kr) cos (2w)] ( kr’”)

=1
)

Z (k,d)J2e(kr) £ [z cos (2£6)

£=1

+ysin (2[0)]}, (46)

0Gy

5 = T {[H“)(kr) + So(k,d)Jy(kr)

+2 i S2¢(k,d)Jze+1(kr) cos (2[0)] (—?)

£=1

;2‘ Z Sa2¢(k,d)J2e(kr) £ [—z sin (2£0)

£=1

+ycos (280)1}, (47)
for y > 0.

IV. NUMERICAL RESULTS

The main advantage of using the lattice sums method
is that, for a given set (k,d), the coefficients of the se-
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TABLE I. Normal incidence. The first 22 values of Sy, and S5, for A < d and A > d (d = 1),
together with the nearest-neighbor estimates SJ, ~ 2 Ya,(kd).

A =0.23 A=1.77

2¢ S3, S 2 Ya(kd) S5 Sae 2 Y2e(kd)

0 —0.035528 0.199540 0.300607 —0.43659 0.28088 0.33701

2 0.053703 —0.198820 —0.304103 0.56341 0.07074 0.12868

4 —0.108150 0.187800 0.304812 0.56341 —0.92948 —1.28066

6 0.191780 —0.140160 —0.273319 0.56341 —5.04250 —4.92973

8 —0.270990 0.020452 0.167699 0.56341 —5.3040 x 10* —5.2099 x 10*
10 0.266130 0.181310 0.032814 0.56341 —1.0691 x 10>  —1.0653 x 10°
12 —0.076179 —0.380830 —0.258540 0.56341 —3.4789 x 10* —3.4766 x 10*
14 —0.290020 0.364100 0.309130 0.56341 —1.6447 x 10°  —1.6445 x 10°
16 0.536910 0.035812 —0.019554 0.56341 —1.0604 x 10® —1.0604 x 10®
18  —0.244020 —0.520380 —0.337140 0.56341 —8.9274 x 10°  —8.9274 x 10°
20 —0.354790 0.384150 0.117792 0.56341 —9.5014 x 10’  —9.5014 x 10!
22 0.268740 0.167120 0.389813 0.56341 —1.2466 x 10'*  —1.2466 x 10'*
24 0.069628 0.122980 0.111452 0.56341 —1.9761 x 10*® —1.9761 x 10'®
26 0.687400 —0.014258 —0.297882 0.56341 —3.7222 x 10*®  —3.7223 x 10'®
28 0.277790 —1.061700 —0.621598 0.56341 —8.2168 x 102° —8.2168 x 10%°
30 —0.306420 —0.841700 —1.096150 0.56341 —2.1008 x 102®  —2.1008 x 10%*
32 0.484990 —2.346700 —2.531620 0.56341 —6.1583 x 10%®> —6.1583 x 10%°
34 —0.087253 —8.393500 —7.935630 0.56341 —2.0516 x 102  —2.0516 x 10%®
36 —0.274410 —31.299000 —31.578300 0.56341 -7.7072 x 10%°  —-7.7072 x 10%°
38 0.261040 —152.080000 —152.099000 0.56341 —3.2429 x 10%®  —3.2429 x 10%*
40 —0.144210 —862.520000 —862.473000 0.56341 —1.5189 x 10%®  —1.5189 x 103%¢
42 0.290140 —5652.200000 —5652.260000 0.56341 —7.8758 x 103®  —7.8758 x 10%®

ries (43,46,47) have to be evaluated once only. This in-
creases appreciably the speed of numerical evaluation of
the Green’s function and its derivatives at any point in

the zy plane.

For numerical calculations, the series contained in (31) _ o~ 1 1
converges slowly. The convergence can be accelerated by - o m K ) (K
means of Kummer’s method. We start with the series n=mt — (k/(nK))

TABLE II. Normal incidence. Comparison between different numerical methods to evaluate the

Green’s function (d = 1). The columns 5 and 6 display the real and imaginary parts of the Green’s
function, IV represents the number of terms in the corresponding series and 7', is the CPU time, in
seconds, required for n independent evaluations.

Eq. A T y Re[G(z,y)] Im[G(z, y)] N T Tso Tioo

(5) 0.23 0.2 0.03 -0.0501668250134190 0.0108324843142530 159 3 154 343
(11) -0.0501668250134191 0.0108324843142530 121 6 299 629
(43) -0.0501668250137788 0.0108324843138182 11 37 73 111
(43) -0.0501668250134200 0.0108324843142531 21 81 231 388
(5) 0.23 0.2 0.003 -0.0502817699735941 0.0154319789780036 1449 27 1443 3072
(11) -0.0502817699735942 0.0154319789780036 876 38 1940 4131
(43) -0.0502817699733261 0.0154319789783318 11 37 74 109
(43) -0.0502817699735968 0.0154319789780035 21 81 229 386
(5) 0.23 0.2 0.0003 -0.0502814167514775 0.0154784735299674 13294 318 13184 26292
(11) -0.0502814167514774 0.0154784735299674 5746 246 12023 25691
(43) -0.0502814167511948 0.0154784735303132 11 36 73 103
(43) -0.0502814167514801 0.0154784735299671 21 81 228 362
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where m < k/K < m + 1.
asymptotic expansion

The general term has the

1 1

nK |1 - (/)
oo 23
-k LV (%) P
k2 k4
~ R 2O T GrE

and the asymptotic series corresponding to (48) has the
closed-form sum

-1

~

P4(0), (49)

—Pz(O)—t/;(z)(m +1) - _p4(0) ¢<4>(m +1). (50)

Here, (™) (2) is the polygamma function [18]. By means
of (49) and (50) the series (48) may be replaced by the
series

> [mia

n=m+1
i 1 1 k k*
S [__ +—P2(0)——P4(0)]
n=m+1 |X11.| On
1 kK
+§PZ(O)R§¢( Y(m+1)
L p X g @m ) (51)
24 *V K5 ’
J
s
6
0.7
0.6
0.5
0.4
0.3
0.2
f 20 40 60 80 100
s

FIG. 1. The lattice sums S{ and S¥ as functions of the
number of terms considered in the corresponding series, for
A =1.77, d=1. The dashed lines represent the values given
by (25) and (39), respectively.

converging as O(1/n®).

The numerical values in Tables I and II were obtained
with a Mathematica program run on a SPARC-10 work-
station.

Table I displays the values of the first 22 lattice sums
in two particular cases for A > d and A < d. Note the
behavior of the lattice sums S),. Their magnitudes are
small until their order (2¢) becomes comparable with kd,
at which point they increase rapidly. In this region of
large magnitudes, the S;’l are well approximated by the
nearest-neighbors estimate

S¥,(k,d) = 2Ya(kd). (52)

For the same values of A and d we give in Figs. 1 and
2 two examples of partial sums:

S35 (k,d) = 2 Z Jae(mkd) (53)
m=1

Sy (kyd) =2 Y Yae(mkd) (54)
m=1

as functions of n. The dashed lines represent the values
given by (25) and (39). Note that a prohibitive large
number of terms would be required to evaluate these se-
ries to high accuracy by direct summation.

In Table II, the timing (T4) for Eq.(43) represents the
time required to evaluate the Green’s function for the
first point (z,y). To do this, a set of lattice sums S,

J
S
12

20 40 60 80 100n
-0.05

-0.10

-0.15

12

-0.30

-0.35 A

W,

(1M 40 60 80 100

-0.45

FIG. 2. The lattice sums Sj, and S}, as functions of the

number of terms considered in the corresponding series, for
A =0.23, d=1. The dashed lines represent the values given
by (25) and (39), respectively.
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up to order n = N — 1 has to be evaluated. All other
subsequent evaluations of the Green’s function, at any
other point (z,y), use this set, and so require far less
computation time. As can be seen from Table II, the use
of Eq. (5) for |y| > 0.03 is computationally advantageous,
whereas for |y| < 0.03, Eq. (43) is superior if more than
three Green’s function evaluations are required. If only
the Green’s function, and not its derivatives are required,
the use of the third-order formulas is not computationally
advantageous, compared with direct summation of (5),
unless y is very small (|y| < 0.0003 for the data here).

In (5) and (11) we stopped the series when the relative
difference of two successive partial sums was less than
1075, From (43) we obtain the same numerical value,
with a high accuracy, summing only a reduced number
of terms.

In Figs. 3 and 4 we plot the real and imaginary parts
of G(z,y) for a short wavelength, for two values of y.
Note the development of the logarithmic singularity in
the real part of G(z,y) as z tends to zero [see Eq. (42)].
This singularity is pronounced for |y| small (Fig. 4) but
is much less evident when |y| is increased (Fig. 3). For
a longer wavelength, we see from Figs. 5 and 6 that the
imaginary part of G(z,y) is effectively constant, while
the contribution of the logarithmic term to the real part
has become the dominant feature, with the oscillations
evident in Figs. 3 and 4 having disappeared.

In Figs. 7 and 8 we display the behavior of G(z,y) as a
function of z for an off-axis case (§; = 7/6). Once again,

Re[ G(XIY) ]

Al
¥

0.05

Im[ G(x,Y) ]

A NN A
FFT

FIG. 3. Normal incidence. The real and imaginary
parts of the Green’s function G(z,y) for y = 0.03 and
A=023(d=1).
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Re[ G(x,y) 1

AL

NAWATANVANS
SN | W

Im[ G(x,y) 1

AT
/0.4\7.2_ 0.v0.4\

FIG. 4. Normal incidence. The real and imaginary
parts of the Green’s function G(z,y) for y = 0.003 and
A=0.23(d=1).

Re[ G(x,y) 1

Im[ G(x,y) 1

FIG. 5. Normal incidence. The real and imaginary
parts of the Green’s function G(z,y) for y = 0.03 and
A=177 (d=1).
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Rel[ G(x,y) 1

FIG. 6. Normal incidence. @ The real and imaginary
parts of the Green’s function G(z,y) for y = 0.003 and
A=177(d=1).

Re[ G(x,y) 1

LN\
o N

B

Im[ G(x,y) 1]

AWANFAWA
FAf

-0.

0.1

FIG. 7. Off-axis incidence. The real and imaginary parts
of the Green’s function G(z,y) for y = 0.03, §; = =/6, and
A=0.23(d=1).

Rel G(x,y) 1

FIG. 8. Off-axis incidence. The real and imaginary parts
of the Green’s function G(z,y) for y = 0.03, ; = /6, and
A=1.77 (d=1).

at a short wavelength both the real and imaginary parts
of G(z,y) exhibit oscillations. At a longer wavelength,
these oscillations are gone, but the effect of the nonzero
angle of incidence is clear: the imaginary part of G now
varies with z, as the phase factor exp (iapz) effectively
“mixes” the real and imaginary parts.

V. CONCLUSIONS

We have considered spectral and spatial expansions for
the Green’s function for grating diffraction problems. For
the former, we have exhibited cubically convergent ex-
pansions for the Green’s function, and its  and y deriva-
tives. These cubically convergent expansions are prefer-
able to direct summation for the Green’s function only
for points very close to the grating plane (i.e., for small
values of y). If spatial derivatives of the Green’s func-
tion are required, then direct summation becomes less
attractive by comparison with the (somewhat more com-
plicated) cubically convergent expansions.

The spatial expansions seem to us to provide the
method of choice for evaluating the Green’s function and
its spatial derivatives, if accurate values at a number of
points with |y| small are required. The prerequisite for ef-
ficient use of spatial expansion is the accurate evaluation
of lattice sums, and we have given a method for the evalu-
ation of lattice sums for normally incident radiation. We
are currently attempting to find methods for evaluating
lattice sums for off-axis incidence. Our investigations of
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this question have revealed that the techniques outlined
in this paper remain valid in principle. However, numeri-
cal difficulties, associated with ill-conditioned expressions
for lattice sums of high order, require adaptations of the
methods which are still under investigation.
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APPENDIX: FORMULAS FOR COMPUTATION
OF TRANSCENDENTAL FUNCTIONS

The series expansion of the polylogarithm function
may be obtained starting with the expansion [19]

oo
+2. B o
— TL

where B,, are the Bernoulli numbers. Dividing by z and
integrating over z from 0 to z, we obtain

z > z"
:lnz—§+223nm 5
n=

which gives the series expansion of the function [19]:

r4

MIN

ez — 1

In(1 —e™7?)

—nz

Lis(e%) %f i = ln(1-e?). (A1)

n

n=1

The polylogarithm function Li,(2) is related to the
Lerch phi function ®(z,s,v) [18], and has the series ex-
pansion:

Liy(2) Y e = 2o
_ Z' (s — ) (lnnz|)n
N (Inz)*! [¥(s) —9¥(1)—In(Inl/z)] . (A2)

(s —1)!

Here, the prime indicates that the term withn = s—1is
to be omitted. Also, {(s) is the Riemann zeta function
[18] and 9 (s) is the digamma function [18] (1) = —y =
—0.577216]. The series expansion (A2) is valid for s =
2,3,4,...and |lnz| < 27.

The derivatives of the polylogarithm function are given
by the expressions

d 1

= Li == - A3
dlez(z) - In (1 - 2), (A3)
d _. 1_.

ELI,(Z) = ;Ll,_]_(z) ,$=3,4,.... (A4)

In all these expressions, we see there exists a logarith-
mic term. This implies a branch cut, which for ®(z, s,v)
and Li,(z) is taken to run from z = 1 along the positive
real axis. ® and Li, are then analytic in the cut plane
[18].

In particular, if z — e*, the expansion (A2) becomes

I
e
~
0
!
E
+
N

Li, (e?) (—S—-:—l—)-'[q/;(s) + v —In(—2)]
n=0
82 2" 281
= C(S—n)g + ( 1)' [¢ —ln(-—Z)]
n=0 )
1B oo Y el T (45)
: n=s+1 '

valid for s > 2 and |z| < 2m. To obtain (A5) we have
used the relation between the Riemann zeta function and
Bernoulli numbers: ((—n) = —B,41/(n+1), ¢(0) =B
Also, ¥(s) +v = Zp_ 1/p.

For numerical evaluations of Lis(e®), if |z| < 1, we
need ~ 6 nonzero terms in the series to obtain an ac-
curacy of 10712, We mention that in (10) and (13), we
have z = —K|y| + iKz, so that |z| = Kr = 277 /d. Con-
sequently, the convergence radius for (A5) is 7 < d; i.e.,
the expansion (A5) is valid at any point within the unit
cell (r < d/v/2).

From (A1), with z = —i6, we obtain the Clausen func-
tion Cly:

eig)] _ Z cos1(1n0)

n=1

Z BZn

The generalized Clausen function is

Cly(8) %' Re [Liy (

0211

= ~Inj|- 2n)'(2n)

for 0 < 6 < 2m.
defined as [19]

>, cos (nb . i
Clzs+1(0) = Z # = Re [Lizs41(e)],

n=1
= sin (n6) . 0
Cly,12(8) = Z:l ez =Im [Lize4+2(e™)]
for s =0,1,2,... and, from the series expansion (A5), we
obtain

2n)

Claas1(0) = Z%__(_l)ngzn
(=D (1Y o _ (_p0e 0 1
+2s)! (;p) 0% — (1) Gy 12 1P

02n+2s

Zan 1)"m. (A6)

This series expansion is valid for 0 < 8 < 27r. We mention
that, in (33), 0 < z < d and, therefore, 0 < Kz < 2m.
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